Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation.
نویسندگان
چکیده
Promoters and enhancers are cis-acting elements that control gene transcription via complex networks of protein-DNA and protein-protein interactions. Whereas promoters deal with putting in place the RNA polymerase, both enhancers and promoters can control transcriptional initiation and elongation. We have previously shown that promoter structure modulates alternative splicing, strengthening the concept of a physical and functional coupling between transcription and splicing. Here we report that the promoter effect is due to the control of RNA pol II elongation. We found that the simian virus 40 (SV40) transcriptional enhancer, inserted in fibronectin (FN) minigene constructs transfected into mammalian cells, controls alternative splicing by inhibiting inclusion of the FN extra domain I (EDI) exon into mature mRNA. Deletion analysis of enhancer subdomains and competitions in vivo with excess of specific enhancer DNA subfragments demonstrate that the "minimal" enhancer, consisting of two 72-bp repeats, is responsible for the splicing effect. The 72-bp repeat region has been reported to promote RNA pol II elongation. When transcription is driven by the alpha-globin promoter linked to the SV40 enhancer, basal EDI inclusion and activation by the SR (Ser-Arg-rich) protein SF2/ASF are much lower than with other promoters. Deletion of only one of the two 72-bp repeats not only provokes higher EDI inclusion levels but allows responsiveness to SF2/ASF. These effects are the consequence of a decrease in RNA pol II elongation evidenced both by an increase in the proportions of shorter proximal over full length transcripts and by higher pol II densities upstream of the alternative exon detected by chromatin immunoprecipitation.
منابع مشابه
Transcriptional activators differ in their abilities to control alternative splicing.
Promoter and enhancer elements can influence alternative splicing, but the basis for this phenomenon is not well understood. Here we investigated how different transcriptional activators affect the decision between inclusion and exclusion (skipping) of the fibronectin EDI exon. A mutant of the acidic VP16 activation domain called SW6 that preferentially inhibits polymerase II (pol II) elongatio...
متن کاملControl of alternative pre-mRNA splicing by RNA Pol II elongation: faster is not always better.
The realization that the mammalian proteomic complexity is achieved with a limited number of genes demands a better understanding of alternative splicing regulation. Promoter control of alternative splicing was originally described by our group in studies performed on the fibronectin gene. Recently, other labs extended our findings to the cystic fibrosis, CD44 and CGRP genes strongly supporting...
متن کاملThe landscape of RNA polymerase II transcription initiation in C. elegans reveals promoter and enhancer architectures.
RNA polymerase transcription initiation sites are largely unknown in Caenorhabditis elegans. The initial 5' end of most protein-coding transcripts is removed by trans-splicing, and noncoding initiation sites have not been investigated. We characterized the landscape of RNA Pol II transcription initiation, identifying 73,500 distinct clusters of initiation. Bidirectional transcription is frequen...
متن کاملMultiple links between transcription and splicing.
Transcription and pre-mRNA splicing are extremely complex multimolecular processes that involve protein-DNA, protein-RNA, and protein-protein interactions. Splicing occurs in the close vicinity of genes and is frequently cotranscriptional. This is consistent with evidence that both processes are coordinated and, in some cases, functionally coupled. This review focuses on the roles of cis- and t...
متن کاملA Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans
The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 12 شماره
صفحات -
تاریخ انتشار 2002